Zeros of some bi-orthogonal polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2002 J. Phys. A: Math. Gen. 35517
(http://iopscience.iop.org/0305-4470/35/3/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:16

Please note that terms and conditions apply.

Zeros of some bi-orthogonal polynomials

Madan Lal Mehta ${ }^{1}$
CEA/Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex, France
E-mail: mehta@spht.saclay.cea.fr

Received 3 September 2001, in final form 1 November 2001
Published 11 January 2002
Online at stacks.iop.org/JPhysA/35/517

Abstract

Ercolani and McLaughlin have recently shown that the zeros of the biorthogonal polynomials with the weight $w(x, y)=\exp \left[-\left(V_{1}(x)+V_{2}(y)+\right.\right.$ $2 c x y) / 2$], relevant to a model of two coupled Hermitian matrices, are real and simple. We show that their argument applies to the more general case of the weight $\left(w_{1} * w_{2} * \cdots * w_{j}\right)(x, y)$, a convolution of several weights of the same form. This general case is relevant to a model of several Hermitian matrices coupled in a chain. Their argument also works for more general weights such as $W(x, y)=\mathrm{e}^{-x-y} /(x+y), 0 \leqslant x, y<\infty$, and for a convolution of several such weights.

PACS numbers: $02.10 . \mathrm{Yn}, 02.10 . \mathrm{Ab}, 02.30 . \mathrm{Gp}, 05.50 .+\mathrm{q}$

1. Introduction

For a weight function $w(x, y)$ such that all the moments

$$
\begin{equation*}
M_{i, j}:=\int w(x, y) x^{i} y^{j} \mathrm{~d} x \mathrm{~d} y \tag{1.1}
\end{equation*}
$$

exist and

$$
\begin{equation*}
D_{n}:=\operatorname{det}\left[M_{i, j}\right]_{i, j=0,1, \ldots, n} \neq 0 \tag{1.2}
\end{equation*}
$$

for all $n \geqslant 0$, unique monic polynomials $p_{n}(x)$ and $q_{n}(x)$ of degree n exist satisfying the bi-orthogonality relations (a polynomial is called monic when the coefficient of the highest degree is one)

$$
\begin{equation*}
\int w(x, y) p_{n}(x) q_{m}(y) \mathrm{d} x \mathrm{~d} y=h_{n} \delta_{m n} \tag{1.3}
\end{equation*}
$$

${ }^{1}$ Member of CNRS, France.

Just like the orthogonal polynomials they can be expressed as determinants, e.g.

$$
p_{n}(x)=\frac{1}{D_{n-1}} \operatorname{det}\left[\begin{array}{cccc}
M_{0,0} & \ldots & M_{0, n-1} & 1 \tag{1.4}\\
M_{1,0} & \ldots & M_{1, n-1} & x \\
\vdots & \vdots & \vdots & \vdots \\
M_{n, 0} & \ldots & M_{n, n-1} & x^{n}
\end{array}\right]
$$

and have integral representations, e.g.

$$
\begin{align*}
& p_{n}(x) \propto \int \Delta_{n}(\boldsymbol{x}) \Delta_{n}(\boldsymbol{y}) \prod_{j=1}^{n}\left(x-x_{j}\right) w\left(x_{j}, y_{j}\right) \mathrm{d} x_{j} \mathrm{~d} y_{j} \tag{1.5}\\
& \Delta_{n}(\boldsymbol{x}):=\prod_{1 \leqslant i<j \leqslant n}\left(x_{j}-x_{i}\right) \quad \Delta_{n}(\boldsymbol{y}):=\prod_{1 \leqslant i<j \leqslant n}\left(y_{j}-y_{i}\right) . \tag{1.6}
\end{align*}
$$

From limited numerical evidence for the weights
(i) $w(x, y)=\sin (\pi x y), \quad 0 \leqslant x, y \leqslant 1$;
(ii) $w(x, y)=|x-y|, \quad-1 \leqslant x, y \leqslant 1$;
(iii) $w(x, y)=\mathrm{e}^{-x-y} /(x+y), \quad 0 \leqslant x, y<\infty$;
(iv) $w(x, y)=\exp \left(-x^{2}-y^{2}-c x y\right), \quad-\infty<x, y<\infty, \quad 0<c<2$;
one might think that the zeros of the bi-orthogonal polynomials are real, simple, lie respectively in the x - or y-support of $w(x, y)$, interlace for successive n, \ldots.

Alas, this is not true in general as seen by the following example due to Pierre Deligne. If one takes

$$
\begin{align*}
& w(x, y)=u(x, y)+v(x, y) \tag{1.7}\\
& u(x, y)= \begin{cases}\delta(x-y) & -1 \leqslant x, y \leqslant 1 \\
0 & \text { otherwise }\end{cases} \tag{1.8}\\
& v(x, y)=\frac{1}{8}[\delta(x-1) \delta(y+2)+\delta(x+1) \delta(y-2)] . \tag{1.9}
\end{align*}
$$

Then $p_{3}(x)$ and $q_{3}(x)$ have complex zeros.
However, Ercolani and Mclaughlin have recently [1] shown that with the weight function

$$
\begin{equation*}
w(x, y)=\exp \left[-\frac{1}{2} V_{1}(x)-\frac{1}{2} V_{2}(y)-c x y\right] \tag{1.10}
\end{equation*}
$$

$(-\infty<x, y<\infty), V_{1}$ and V_{2} polynomials of positive even degree, c a small non-zero real constant, all the zeros of the bi-orthogonal polynomials $p_{n}(x)$ and $q_{n}(x)$ are real and simple.

In this brief paper we will show that their argument works for the following general case encountered in random Hermitian matrices coupled in a linear chain. Let $V_{j}(x), 1 \leqslant j \leqslant p$, be polynomials of positive even degree and $c_{j}, 1 \leqslant j<p$, be small real constants, none of them being zero ('small' so that all the moments $M_{i, j}$ defined below, equation (1.13), exist). Further let

$$
\begin{align*}
& w_{k}(x, y):=\exp \left[-\frac{1}{2} V_{k}(x)-\frac{1}{2} V_{k+1}(y)-c_{k} x y\right] \tag{1.11}\\
& \left(w_{i_{1}} * w_{i_{2}} * \cdots * w_{i_{k}}\right)\left(\xi_{1}, \xi_{k+1}\right):=\int w_{i_{1}}\left(\xi_{1}, \xi_{2}\right) w_{i_{2}}\left(\xi_{2}, \xi_{3}\right) \ldots w_{i_{k}}\left(\xi_{k}, \xi_{k+1}\right) \mathrm{d} \xi_{2} \ldots \mathrm{~d} \xi_{k} . \tag{1.12}
\end{align*}
$$

Moreover, assume that for all $i, j \geqslant 0$

$$
\begin{equation*}
M_{i, j}:=\int x^{i}\left(w_{1} * w_{2} * \cdots * w_{p-1}\right)(x, y) y^{j} \mathrm{~d} x \mathrm{~d} y \tag{1.13}
\end{equation*}
$$

exist.

Theorem. Then monic polynomials $p_{j}(x)$ and $q_{j}(x)$ can be uniquely defined by

$$
\begin{equation*}
\int p_{j}(x)\left(w_{1} * w_{2} * \cdots * w_{p-1}\right)(x, y) q_{k}(y) \mathrm{d} x \mathrm{~d} y=h_{j} \delta_{j k} \tag{1.14}
\end{equation*}
$$

and all the zeros of $p_{j}(x)$ and of $q_{j}(x)$ are real and simple.
The same argument works for any weight $W(x, y)$ such that $\operatorname{det}\left[W\left(x_{i}, y_{j}\right)\right]_{i, j=1, \ldots, n}>0$ for $x_{1}<x_{2}<\cdots<x_{n}, y_{1}<y_{2}<\cdots<y_{n}$ and moments $M_{i, j}=\int W(x, y) x^{i} y^{j} \mathrm{~d} x \mathrm{~d} y$ exist for all $i, j \geqslant 0$. For example, if $W(x, y)=\mathrm{e}^{-x-y} /(x+y), 0 \leqslant x, y<\infty$, then monic polynomials $p_{j}(x)$ can be uniquely defined by

$$
\begin{equation*}
\int_{0}^{\infty} p_{j}(x) W(x, y) p_{k}(y) \mathrm{d} x \mathrm{~d} y=h_{j} \delta_{j k} \tag{1.15}
\end{equation*}
$$

(here $W(x, y)$ is symmetric in x and y so that $\left.p_{j}(x)=q_{j}(x)\right)$ and all the zeros of $p_{j}(x)$ are real, simple and non-negative.

The weight function $W(x, y)=\left(w_{1} * w_{2} * \cdots * w_{p}\right)(x, y)$ with equations (1.11) and (1.12) is relevant to a model of p Hermitian matrices coupled in a chain [2]. In fact all the correlation functions of the eigenvalues of these matrices can be expressed as determinants whose elements are combinations of $P_{i, j}(x)$ and $Q_{i, j}(x)$, equations (2.1)-(2.6), where $p_{j}(x)$ and $q_{j}(x)$ are polynomials bi-orthogonal with respect to this $W(x, y)$. For example, the eigenvalue density of the matrices at the ends of the chain is related to the density of the zeros of these bi-orthogonal polynomials. A knowledge of the distribution of the zeros of $P_{i, j}(x)$ and $Q_{i, j}(x)$ can thus be very useful to study the correlation functions in the above model.

2. Results and proofs

Here we essentially follow section 3 of [1]. With any monic polynomials $p_{j}(x)$ and $q_{j}(x)$ of degree j, let us write

$$
\begin{align*}
& P_{1, j}(x):=p_{j}(x) \tag{2.1}\\
& P_{i, j}(x):=\int p_{j}(\xi) U_{L i}(\xi, x) \mathrm{d} \xi \quad 1<i \leqslant p \tag{2.2}\\
& U_{L i}(\xi, x):=\left(w_{1} * w_{2} * \cdots * w_{i-1}\right)(\xi, x) \quad 1<i \leqslant p \tag{2.3}\\
& Q_{p, j}(x):=q_{j}(x) \tag{2.4}\\
& Q_{i, j}(x):=\int U_{R i}(x, \xi) q_{j}(\xi) \mathrm{d} \xi \quad 1 \leqslant i<p \tag{2.5}\\
& U_{R i}(x, \xi):=\left(w_{i} * w_{i+1} * \cdots * w_{p-1}\right)(x, \xi) \quad 1 \leqslant i<p \tag{2.6}
\end{align*}
$$

Note that $P_{i, j}(x)$ and $Q_{i, j}(x)$ are not necessarily polynomials.
Lemma 1. For $x_{1}<x_{2}<\cdots<x_{n}, y_{1}<y_{2}<\cdots<y_{n}$

$$
\begin{equation*}
\operatorname{det}\left[w_{i}\left(x_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n}>0 \tag{2.7}
\end{equation*}
$$

This is essentially equation (40) of [1]. This can also be seen as follows. Let X and Y be two $n \times n$ diagonal matrices with diagonal elements x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} respectively. Then the integral of $\exp \left[-c \operatorname{tr}\left(U X U^{-1} Y\right)\right]$ over the $n \times n$ unitary matrices U is given by [3]

$$
\begin{equation*}
K \frac{\operatorname{det}\left[\exp \left(-c x_{i} y_{j}\right)\right]_{i, j=1, \ldots, n}}{\Delta_{n}(\boldsymbol{x}) \Delta_{n}(\boldsymbol{y})} \tag{2.8}
\end{equation*}
$$

where K is a positive constant depending on c and n. Hence

$$
\begin{equation*}
\exp \left\{-\frac{1}{2} \sum_{j=1}^{n}\left[V_{i}\left(x_{j}\right)+V_{i+1}\left(y_{j}\right)\right]\right\} \int \mathrm{d} U \mathrm{e}^{-c_{i} \operatorname{tr} U X U^{-1} Y}=K \frac{\operatorname{det}\left[w_{i}\left(x_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n}}{\Delta_{n}(\boldsymbol{x}) \Delta_{n}(\boldsymbol{y})} . \tag{2.9}
\end{equation*}
$$

The left-hand side is evidently positive while on the right hand side the denominator is positive since $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$. From this equation (2.7) follows.
Lemma 2. For $x_{1}<x_{2}<\cdots<x_{n}, y_{1}<y_{2}<\cdots<y_{n}$,

$$
\begin{equation*}
\operatorname{det}\left[\left(w_{i_{1}} * w_{i_{2}} * \cdots * w_{i_{\ell}}\right)\left(x_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n}>0 \tag{2.10}
\end{equation*}
$$

Proof. Binet-Cauchy formula tells us that [4]

$$
\operatorname{det}\left[\left(w_{i_{1}} * w_{i_{2}}\right)\left(x_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n}
$$

is equal to
$\int_{\xi_{1} \leqslant \xi_{2} \leqslant \ldots \leqslant \xi_{n}} \operatorname{det}\left[w_{i_{1}}\left(x_{j}, \xi_{k}\right)\right]_{j, k=1, \ldots, n} \cdot \operatorname{det}\left[w_{i_{2}}\left(\xi_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{n}$.
By lemma 1 the integrand is everywhere positive, so lemma 2 is proved for the case $\ell=2$. The proof is now completed by induction on ℓ, again using the Binet-Cauchy formula.

Lemma 3. For any monic polynomial $p_{j}(x)$ of degree $j, P_{i, j}(x), 1 \leqslant i \leqslant p$, may have at most j distinct real zeros. Similarly, for any monic polynomial $q_{j}(x)$ of degree j, $Q_{i, j}(x), 1 \leqslant i \leqslant p$, may have at most j distinct real zeros.

Proof. Let, if possible, $z_{1}<z_{2}<\cdots<z_{m}, m>j$, be the distinct real zeros of $P_{i, j}(x)$. Since

$$
\begin{equation*}
P_{i, j}(x)=\sum_{k=0}^{j} a_{k} T_{i, k}(x) \tag{2.12}
\end{equation*}
$$

with

$$
\begin{align*}
& T_{i, k}(x):=\int \xi^{k} U_{L i}(\xi, x) \mathrm{d} \xi \tag{2.13}\\
& P_{i, j}\left(z_{\ell}\right)=0 \quad \ell=1,2, \ldots, m \quad m>j \tag{2.14}
\end{align*}
$$

implies that

$$
\begin{align*}
& 0=\operatorname{det}\left[\begin{array}{cccc}
T_{i, 0}\left(z_{1}\right) & T_{i, 1}\left(z_{1}\right) & \ldots & T_{i, j}\left(z_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
T_{i, 0}\left(z_{j+1}\right) & T_{i, 1}\left(z_{j+1}\right) & \ldots & T_{i, j}\left(z_{j+1}\right)
\end{array}\right] \\
& \\
& =\int \operatorname{det}\left[\begin{array}{cccc}
U_{L i}\left(\xi_{1}, z_{1}\right) & \xi_{2} U_{L i}\left(\xi_{2}, z_{1}\right) & \ldots & \xi_{j+1}^{j} U_{L i}\left(\xi_{j+1}, z_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
U_{L i}\left(\xi_{1}, z_{j+1}\right) & \xi_{2} U_{L i}\left(\xi_{2}, z_{j+1}\right) & \ldots & \xi_{j+1}^{j} U_{L i}\left(\xi_{j+1}, z_{j+1}\right)
\end{array}\right] \mathrm{d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1} \tag{2.15}\\
& \\
& =\int \xi_{2} \xi_{3}^{2} \ldots \xi_{j+1}^{j} \operatorname{det}\left[U_{L i}\left(\xi_{k}, z_{\ell}\right)\right]_{k, \ell=1, \ldots, j+1} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1} \\
& \text { or } \\
& \int \operatorname{det}\left[U_{L i}\left(\xi_{k}, z_{\ell}\right)\right]_{k, \ell=1, \ldots, j+1} \cdot \operatorname{det}\left[\xi_{k}^{\ell-1}\right]_{k, \ell=1, \ldots, j+1} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1}=0
\end{align*}
$$

in contradiction to lemma 2. Thus m cannot be greater than j.
The proof for $Q_{i, j}(x)$ is similar.

Lemma 4. Let the real constants c_{1}, \ldots, c_{p-1}, none of them being zero, be such that $M_{i, j}$ defined by equation (1.13) exist for all $i, j \geqslant 0$. Then

$$
\begin{equation*}
D_{n}:=\operatorname{det}\left[M_{i, j}\right]_{i, j=1, \ldots, n} \neq 0 \tag{2.17}
\end{equation*}
$$

for any $n \geqslant 0$.
Proof. Let, if possible, $D_{n}=0$ for some n. Then $\sum_{j=0}^{n} M_{i, j} q_{j}=0, q_{j}$ not all zero, and

$$
\begin{equation*}
\int x^{i} U_{L p}(x, y) \sum_{j=0}^{n} q_{j} y^{j} \mathrm{~d} x \mathrm{~d} y=0 \quad i=0,1, \ldots, n \tag{2.18}
\end{equation*}
$$

or

$$
\begin{equation*}
\int p_{i}(x) U_{L p}(x, y) \sum_{j=0}^{n} q_{j} y^{j} \mathrm{~d} x \mathrm{~d} y=0 \tag{2.19}
\end{equation*}
$$

for any polynomial $p_{i}(x)$ of degree $i \leqslant n$. But

$$
\begin{equation*}
\int U_{L p}(x, y) \sum_{j=0}^{n} q_{j} y^{j} \mathrm{~d} y \tag{2.20}
\end{equation*}
$$

has at most n distinct real zeros (lemma 3). So one can choose $p_{i}(x)$ such that

$$
\begin{equation*}
p_{i}(x) \int U_{L p}(x, y) \sum_{j=0}^{n} q_{j} y^{j} \mathrm{~d} y>0 \tag{2.21}
\end{equation*}
$$

in contradiction to equation (2.19). So $D_{n} \neq 0$ and bi-orthogonal polynomials $p_{j}(x), q_{j}(x)$ exist (see equations (1.4) and (1.5)).

Lemma 5. Let $p_{j}(x), q_{j}(x)$ be the bi-orthogonal polynomials, equation (1.14); or with the definitions (2.1)-(2.6)

$$
\begin{equation*}
\int P_{i, j}(x) Q_{i, k}(x) \mathrm{d} x=h_{j} \delta_{j k} \quad 1 \leqslant i \leqslant p \tag{2.22}
\end{equation*}
$$

Then $P_{i, j}(x)$ has at least j real distinct zeros of odd multiplicity. So does have $Q_{i, j}(x)$.
Proof. Assuming $m>0$, let, if possible, $z_{1}<z_{2}<\cdots<z_{m}, m<j$, be the only real zeros of $P_{i, j}(x)$ of odd multiplicity. Set

$$
\begin{align*}
R(x) & =\operatorname{det}\left[\begin{array}{cccc}
Q_{i, 0}(x) & Q_{i, 1}(x) & \ldots & Q_{i, m}(x) \\
Q_{i, 0}\left(z_{1}\right) & Q_{i, 1}\left(z_{1}\right) & \ldots & Q_{i, m}\left(z_{1}\right) \\
\vdots & \vdots & & \vdots \\
Q_{i, 0}\left(z_{m}\right) & Q_{i, 1}\left(z_{m}\right) & \ldots & Q_{i, m}\left(z_{m}\right)
\end{array}\right] \tag{2.23}\\
& =\int U_{R i}(x, \xi) \sum_{k=0}^{m} \alpha_{k} \xi^{k} \mathrm{~d} \xi \tag{2.24}
\end{align*}
$$

with some constants α_{k} depending on z_{1}, \ldots, z_{m}.
Since $m<j$, the bi-orthogonality gives

$$
\begin{equation*}
\int P_{i, j}(x) R(x) \mathrm{d} x=0 . \tag{2.25}
\end{equation*}
$$

However, $R(x)$ can also be written as

$$
\begin{align*}
& R(x)=\int \operatorname{det}\left[\begin{array}{cccc}
U_{R i}\left(x, \xi_{0}\right) & U_{R i}\left(x, \xi_{1}\right) \xi_{1} & \ldots & U_{R i}\left(x, \xi_{m}\right) \xi_{m}^{m} \\
U_{R i}\left(z_{1}, \xi_{0}\right) & U_{R i}\left(z_{1}, \xi_{1}\right) \xi_{1} & \ldots & U_{R i}\left(z_{1}, \xi_{m}\right) \xi_{m}^{m} \\
\vdots & \vdots & & \vdots \\
U_{R i}\left(z_{m}, \xi_{0}\right) & U_{R i}\left(z_{m}, \xi_{1}\right) \xi_{1} & \ldots & U_{R i}\left(z_{m}, \xi_{m}\right) \xi_{m}^{m}
\end{array}\right] \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{m} \\
& =\int \operatorname{det}\left[\begin{array}{cccc}
U_{R i}\left(x, \xi_{0}\right) & U_{R i}\left(x, \xi_{1}\right) & \ldots & U_{R i}\left(x, \xi_{m}\right) \\
U_{R i}\left(z_{1}, \xi_{0}\right) & U_{R i}\left(z_{1}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{1}, \xi_{m}\right) \\
\vdots & \vdots & & \vdots \\
U_{R i}\left(z_{m}, \xi_{0}\right) & U_{R i}\left(z_{m}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{m}, \xi_{m}\right)
\end{array}\right] \xi_{1} \xi_{2}^{2} \ldots \xi_{m}^{m} \mathrm{~d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{m} \\
& =\frac{1}{(m+1)!} \int \operatorname{det}\left[\begin{array}{cccc}
U_{R i}\left(x, \xi_{0}\right) & U_{R i}\left(x, \xi_{1}\right) & \ldots & U_{R i}\left(x, \xi_{m}\right) \\
U_{R i}\left(z_{1}, \xi_{0}\right) & U_{R i}\left(z_{1}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{1}, \xi_{m}\right) \\
\vdots & \vdots & & \vdots \\
U_{R i}\left(z_{m}, \xi_{0}\right) & U_{R i}\left(z_{m}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{m}, \xi_{m}\right)
\end{array}\right] \\
& \times \prod_{0 \leqslant r<s \leqslant m}\left(\xi_{s}-\xi_{r}\right) \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{m} \\
& =\int_{\xi_{0} \leqslant \xi_{1} \leqslant \cdots \leqslant \xi_{m}} \operatorname{det}\left[\begin{array}{cccc}
U_{R i}\left(x, \xi_{0}\right) & U_{R i}\left(x, \xi_{1}\right) & \ldots & U_{R i}\left(x, \xi_{m}\right) \\
U_{R i}\left(z_{1}, \xi_{0}\right) & U_{R i}\left(z_{1}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{1}, \xi_{m}\right) \\
\vdots & \vdots & & \vdots \\
U_{R i}\left(z_{m}, \xi_{0}\right) & U_{R i}\left(z_{m}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{m}, \xi_{m}\right)
\end{array}\right] \\
& \times \prod_{0 \leqslant r<s \leqslant m}\left(\xi_{s}-\xi_{r}\right) \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{m} . \tag{2.26}
\end{align*}
$$

Thus $R(x)$ is represented as an integral whose integrand has a fixed sign determined by the relative ordering of the numbers $x, z_{1}, z_{2}, \ldots, z_{m}$ (lemma 2). It thus follows that $R(x)$ changes sign when x passes through any of the points $z_{k}, k=1, \ldots, m$, and at no other value of x. In other words, z_{1}, \ldots, z_{m} are the only real zeros of $R(x)$ having an odd multiplicity.
And therefore $P_{i, j}(x) R(x)$ has a constant sign, so that

$$
\begin{equation*}
\int P_{i, j}(x) R(x) \mathrm{d} x \neq 0 \tag{2.27}
\end{equation*}
$$

in contradiction to (2.25).
If $P_{i, j}(x)$ has no real zeros of odd multiplicity $(m=0)$, then $R(x)=\int U_{R i}(x, \xi) \mathrm{d} \xi$ is everywhere positive which contradicts equation (2.25).

The proof for $Q_{i, j}(x)$ is similar.
As a consequence, we have the integral representations of $P_{i, j}(x)$ for $i>1$ and of $Q_{i, j}(x)$ for $i<p$ involving their respective zeros

$$
\begin{align*}
P_{i, j}(x) \propto \int \operatorname{det} & {\left[\begin{array}{cccc}
U_{L i}\left(\xi_{0}, x\right) & U_{L i}\left(\xi_{1}, x\right) & \ldots & U_{L i}\left(\xi_{j}, x\right) \\
U_{L i}\left(\xi_{0}, z_{1}\right) & U_{L i}\left(\xi_{1}, z_{1}\right) & \ldots & U_{L i}\left(\xi_{j}, z_{1}\right) \\
\vdots & \vdots & & \vdots \\
U_{L i}\left(\xi_{0}, z_{j}\right) & U_{L i}\left(\xi_{1}, z_{j}\right) & \ldots & U_{L i}\left(\xi_{j}, z_{j}\right)
\end{array}\right] } \\
& \times \prod_{0 \leqslant r<s \leqslant j}\left(\xi_{s}-\xi_{r}\right) \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j} \tag{2.28}
\end{align*}
$$

$$
\begin{align*}
Q_{i, j}(x) \propto \int \operatorname{det} & {\left[\begin{array}{cccc}
U_{R i}\left(x, \xi_{0}\right) & U_{R i}\left(x, \xi_{1}\right) & \ldots & U_{R i}\left(x, \xi_{j}\right) \\
U_{R i}\left(z_{1}, \xi_{0}\right) & U_{R i}\left(z_{1}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{1}, \xi_{j}\right) \\
\vdots & \vdots & & \vdots \\
U_{R i}\left(z_{j}, \xi_{0}\right) & U_{R i}\left(z_{j}, \xi_{1}\right) & \ldots & U_{R i}\left(z_{j}, \xi_{j}\right)
\end{array}\right] } \\
& \times \prod_{0 \leqslant r<s \leqslant j}\left(\xi_{s}-\xi_{r}\right) \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j} . \tag{2.29}
\end{align*}
$$

Lemmas 3 and 5 tell us that if $p_{j}(x)$ and $q_{j}(x)$ are bi-orthogonal polynomials satisfying equation (1.14), then $P_{i, j}(x)$ and $Q_{i, j}(x)$ each have exactly j distinct real zeros of odd multiplicity. In particular, the zeros of the bi-orthogonal polynomials $p_{j}(x) \equiv P_{1, j}(x)$ and $q_{j}(x) \equiv Q_{p, j}(x)$ are real and simple.

With a little more effort one can perhaps show that all the real zeros of $P_{i, j}(x)$ and of $Q_{i, j}(x)$ are simple. Other zeros, if any, must be complex. Whether the zeros of $p_{j}(x)\left(q_{j}(x)\right)$ interlace for successive j, remains an open question.

3. Bi-orthogonal polynomials with another weight

For the weight $W(x, y)=\mathrm{e}^{-x-y} /(x+y), 0 \leqslant x, y<\infty$, one can say as follows:
Lemma 1'. One has [4]:

$$
\begin{equation*}
\operatorname{det}\left[W\left(x_{j}, y_{k}\right)\right]_{j, k=1, \ldots, n}=\exp \left[-\sum_{j=1}^{n}\left(x_{j}+y_{j}\right)\right] \Delta_{n}(\boldsymbol{x}) \Delta_{n}(\boldsymbol{y}) \prod_{j, k=1}^{n}\left(x_{j}+y_{k}\right)^{-1} \tag{3.1}
\end{equation*}
$$

which is evidently positive for $0 \leqslant x_{1}<x_{2}<\cdots<x_{n}, 0 \leqslant y_{1}<y_{2}<\cdots<y_{n}$.
Lemma 3'. For any monic polynomial $p_{j}(x)$ of degree $j, P_{j}(x):=\int_{0}^{\infty} W(x, y) p_{j}(y) \mathrm{d} y$ has at most j distinct real non-negative zeros.

In the proof of lemma 3, replace equations (2.12)-(2.16) by

$$
\begin{align*}
& P_{j}(x)=\sum_{k=0}^{j} a_{k} T_{k}(x) \tag{3.2}\\
& T_{k}(x)=\int_{0}^{\infty} \xi^{k} W(\xi, x) \mathrm{d} \xi \tag{3.3}\\
& P_{j}\left(z_{\ell}\right)=0 \quad \ell=1,2, \ldots, m, \quad m>j \tag{3.4}\\
& 0=\operatorname{det}\left[\begin{array}{cccc}
T_{0}\left(z_{1}\right) & T_{1}\left(z_{1}\right) & \ldots & T_{j}\left(z_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
T_{0}\left(z_{j+1}\right) & T_{1}\left(z_{j+1}\right) & \ldots & T_{j}\left(z_{j+1}\right)
\end{array}\right] \\
& \quad=\int_{0}^{\infty} \operatorname{det}\left[\begin{array}{cccc}
W\left(\xi_{1}, z_{1}\right) & \xi_{2} W\left(\xi_{2}, z_{1}\right) & \ldots & \xi_{j+1}^{j} W\left(\xi_{j+1}, z_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
W\left(\xi_{1}, z_{j+1}\right) & \xi_{2} W\left(\xi_{2}, z_{j+1}\right) & \ldots & \xi_{j+1}^{j} W\left(\xi_{j+1}, z_{j+1}\right)
\end{array}\right] \mathrm{d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1} \\
& \quad=\int \xi_{2} \xi_{3}^{2} \ldots \xi_{j+1}^{j} \operatorname{det}\left[W\left(\xi_{k}, z_{\ell}\right)\right]_{k, \ell=1, \ldots, j+1} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1}
\end{align*}
$$

or
$\int \operatorname{det}\left[W\left(\xi_{k}, z_{\ell}\right)\right]_{k, \ell=1, \ldots, j+1} \cdot \operatorname{det}\left[\xi_{k}^{\ell-1}\right]_{k, \ell=1, \ldots, j+1} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{j+1}=0$
in contradiction to lemma 1^{\prime}. Thus m cannot be greater than j.

Lemma 4'. With

$$
\begin{align*}
& M_{i, j}:=\int_{0}^{\infty} x^{i} W(x, y) y^{j} \mathrm{~d} x \mathrm{~d} y \tag{3.7}\\
& D_{n}:=\operatorname{det}\left[M_{i, j}\right]_{i, j=0,1, \ldots, n} \neq 0 \tag{3.8}
\end{align*}
$$

for any $n \geqslant 0$.
In the proof of lemma 4 replace everywhere $\int U_{L p}(x, y) \ldots$ by $\int_{0}^{\infty} W(x, y) \ldots$
Lemma $\mathbf{5}^{\prime}$. Let $p_{j}(x)$ be the (bi-orthogonal) polynomials satisfying

$$
\begin{equation*}
\int_{0}^{\infty} W(x, y) p_{j}(x) p_{k}(y) \mathrm{d} x \mathrm{~d} y=h_{j} \delta_{j k} . \tag{3.9}
\end{equation*}
$$

Then $P_{j}(x):=\int_{0}^{\infty} W(x, y) p_{j}(y) \mathrm{d} y$ and $p_{j}(x)$ each have at least j distinct real non-negative zeros of odd multiplicity.

Let, if possible, $0 \leqslant z_{1}<z_{2}<\cdots<z_{m} m<j$, be the only real non-negative zeros of $P_{j}(x)$ of odd multiplicity. Set $R(x)=\prod_{j=1}^{m}\left(x-z_{j}\right)$. Then as $m<j$, one has

$$
\begin{equation*}
\int_{0}^{\infty} P_{j}(x) R(x) \mathrm{d} x=0 \tag{3.10}
\end{equation*}
$$

But $P_{j}(x)$ and $R(x)$ change sign simultaneously as x passes through the values z_{1}, \ldots, z_{m} and at no other real positive value. So the product $P_{j}(x) R(x)$ never changes sign, in contradiction to (3.10). Therefore $P_{j}(x)$ has at least j distinct real non-negative zeros of odd multiplicity.

To prove that $p_{j}(x)$ has at least j distinct real non-negative zeros let, if possible, $0 \leqslant z_{1}<z_{2}<\cdots<z_{m}, m<j$, be the only such zeros. Set

$$
\begin{align*}
R(x) & =\operatorname{det}\left[\begin{array}{cccc}
P_{0}(x) & P_{1}(x) & \ldots & P_{m}(x) \\
P_{0}\left(z_{1}\right) & P_{1}\left(z_{1}\right) & \ldots & P_{m}\left(z_{1}\right) \\
\vdots & \vdots & & \vdots \\
P_{0}\left(z_{m}\right) & P_{1}\left(z_{m}\right) & \ldots & P_{m}\left(z_{m}\right)
\end{array}\right] \\
& =\int_{0}^{\infty} W(x, \xi) \sum_{k=0}^{m} \alpha_{k} \xi^{k} \mathrm{~d} \xi \tag{3.11}
\end{align*}
$$

with some constants α_{k} depending on z_{1}, \ldots, z_{m}.
Since $m<j$, the bi-orthogonality gives

$$
\begin{equation*}
\int_{0}^{\infty} p_{j}(x) R(x) \mathrm{d} x=0 . \tag{3.12}
\end{equation*}
$$

But

$$
\begin{align*}
R(x) \propto \int_{0}^{\infty} \operatorname{det} & {\left[\begin{array}{cccc}
W\left(x, \xi_{0}\right) & W\left(x, \xi_{1}\right) & \ldots & W\left(x, \xi_{m}\right) \\
W\left(z_{1}, \xi_{0}\right) & W\left(z_{1}, \xi_{1}\right) & \ldots & W\left(z_{1}, \xi_{m}\right) \\
\vdots & \vdots & & \\
W\left(z_{m}, \xi_{0}\right) & W\left(z_{m}, \xi_{1}\right) & \ldots & W\left(z_{m}, \xi_{m}\right)
\end{array}\right] } \\
& \times \prod_{0 \leqslant r<s \leqslant m}\left(\xi_{s}-\xi_{r}\right) \mathrm{d} \xi_{0} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{m} \tag{3.13}
\end{align*}
$$

which says that z_{1}, \ldots, z_{m} are the only distinct real non-negative zeros of $R(x)$ of odd multiplicity and therefore $p_{j}(x) R(x)$ has a constant sign, in contradiction to (3.12).

4. Conclusion

We have shown with the arguments of Ercolani and McLaughlin that if the weight $w(x, y)$ is such that $\operatorname{det}\left[w\left(x_{i}, y_{j}\right)\right]_{i, j=1, \ldots, n}>0$ for $x_{1}<x_{2}<\cdots<x_{n}, y_{1}<y_{2}<\cdots<y_{n}$ and moments $\int w(x, y) x^{i} y^{j} \mathrm{~d} x \mathrm{~d} y$ exist for all $i, j \geqslant 0$, then bi-orthogonal polynomials exist and their zeros are real, simple and lie in the respective supports of the weight $w(x, y)$. The same is true for a weight which is a convolution of several such weights.

Acknowledgment

I am grateful to P M Bleher for supplying me with a copy of the preprint of [1].

References

[1] Ercolani N M and Mclaughlin K T-R 2001 Asymptotic and integrable structures for bi-orthogonal polynomials associated to a random two matrix model Physica D 152-153 232-68
[2] Itzykson C and Zuber J-B 1980 The planar approximation II J. Math. Phys. 21 411-21
Mehta M L 1981 A method of integration over matrix variables Commun. Math. Phys. 71 327-40
Chaddha S, Mahoux G and Mehta M L 1981 A method of integration over matrix variables II J. Phys. A: Math. Gen. 14 571-86
Eynard B 1997 Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices Nucl. Phys. B 506 633-64
Eynard B 1998 Correlation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix J. Phys. A: Math. Gen. 31 8081-102
Eynard B and Mehta M L 1998 Matrices coupled in a chain: I. Eigenvalue correlations J. Phys. A: Math. Gen. 31 4449-56
Mahoux G, Mehta M L and Normand J-M 1998 Matrices coupled in a chain: II. Spacing functions J. Phys. A: Math. Gen. 31 4457-64
[3] For example, see Mehta M L 1991 Random Matrices (New York: Academic) appendix A. 5
[4] For example, see Mehta M L 1989 Matrix Theory (Z.I. de Courtaboeuf, 91944 Les Ulis Cedex, France: Les Editions de Physique) sections 3.7 and 7.1.3

