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Abstract
Ercolani and McLaughlin have recently shown that the zeros of the bi-
orthogonal polynomials with the weight w(x, y) = exp[−(V1(x) + V2(y) +
2cxy)/2], relevant to a model of two coupled Hermitian matrices, are real and
simple. We show that their argument applies to the more general case of the
weight (w1 ∗w2 ∗ · · · ∗wj)(x, y), a convolution of several weights of the same
form. This general case is relevant to a model of several Hermitian matrices
coupled in a chain. Their argument also works for more general weights such
as W(x, y) = e−x−y/(x + y), 0 � x, y < ∞, and for a convolution of several
such weights.

PACS numbers: 02.10.Yn, 02.10.Ab, 02.30.Gp, 05.50.+q

1. Introduction

For a weight functionw(x, y) such that all the moments

Mi,j :=
∫
w(x, y)xiyj dx dy (1.1)

exist and

Dn := det[Mi,j ]i,j=0,1,...,n �= 0 (1.2)

for all n � 0, unique monic polynomials pn(x) and qn(x) of degree n exist satisfying the
bi-orthogonality relations (a polynomial is called monic when the coefficient of the highest
degree is one) ∫

w(x, y)pn(x)qm(y) dx dy = hnδmn. (1.3)
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Just like the orthogonal polynomials they can be expressed as determinants, e.g.

pn(x) = 1

Dn−1
det



M0,0 . . . M0,n−1 1
M1,0 . . . M1,n−1 x

...
...

...
...

Mn,0 . . . Mn,n−1 xn


 (1.4)

and have integral representations, e.g.

pn(x) ∝
∫
�n(x)�n(y)

n∏
j=1

(x − xj )w(xj , yj ) dxj dyj (1.5)

�n(x) :=
∏

1�i<j�n
(xj − xi) �n(y) :=

∏
1�i<j�n

(yj − yi). (1.6)

From limited numerical evidence for the weights

(i) w(x, y) = sin(πxy), 0 � x, y � 1;
(ii) w(x, y) = |x − y|, −1 � x, y � 1;

(iii) w(x, y) = e−x−y/(x + y), 0 � x, y < ∞;
(iv) w(x, y) = exp(−x2 − y2 − cxy), −∞ < x, y < ∞, 0 < c < 2;
one might think that the zeros of the bi-orthogonalpolynomials are real, simple, lie respectively
in the x- or y-support of w(x, y), interlace for successive n, . . . .

Alas, this is not true in general as seen by the following example due to Pierre Deligne.
If one takes

w(x, y) = u(x, y) + v(x, y) (1.7)

u(x, y) =
{
δ(x − y) −1 � x, y � 1
0 otherwise

(1.8)

v(x, y) = 1
8 [δ(x − 1)δ(y + 2) + δ(x + 1)δ(y − 2)]. (1.9)

Then p3(x) and q3(x) have complex zeros.
However, Ercolani and Mclaughlin have recently [1] shown that with the weight function

w(x, y) = exp
[− 1

2V1(x)− 1
2V2(y)− cxy

]
(1.10)

(−∞ < x, y < ∞), V1 and V2 polynomials of positive even degree, c a small non-zero real
constant, all the zeros of the bi-orthogonal polynomials pn(x) and qn(x) are real and simple.

In this brief paper we will show that their argument works for the following general case
encountered in random Hermitian matrices coupled in a linear chain. Let Vj(x), 1 � j � p,
be polynomials of positive even degree and cj , 1 � j < p, be small real constants, none of
them being zero (‘small’ so that all the moments Mi,j defined below, equation (1.13), exist).
Further let

wk(x, y) := exp
[− 1

2Vk(x)− 1
2Vk+1(y)− ckxy

]
(1.11)

(
wi1 ∗ wi2 ∗ · · · ∗wik

)
(ξ1, ξk+1) :=

∫
wi1(ξ1, ξ2)wi2(ξ2, ξ3) . . .wik (ξk, ξk+1) dξ2 . . . dξk.

(1.12)

Moreover, assume that for all i, j � 0

Mi,j :=
∫
xi(w1 ∗ w2 ∗ · · · ∗wp−1)(x, y)y

j dx dy (1.13)

exist.
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Theorem. Then monic polynomials pj (x) and qj (x) can be uniquely defined by∫
pj (x)(w1 ∗ w2 ∗ · · · ∗ wp−1)(x, y)qk(y) dx dy = hj δjk (1.14)

and all the zeros of pj (x) and of qj (x) are real and simple.

The same argument works for any weight W(x, y) such that det[W(xi, yj )]i,j=1,...,n > 0
for x1 < x2 < · · · < xn, y1 < y2 < · · · < yn and moments Mi,j = ∫

W(x, y)xiyj dx dy
exist for all i, j � 0. For example, if W(x, y) = e−x−y/(x + y), 0 � x, y < ∞, then monic
polynomials pj (x) can be uniquely defined by∫ ∞

0
pj(x)W(x, y)pk(y) dx dy = hj δjk (1.15)

(here W(x, y) is symmetric in x and y so that pj (x) = qj (x)) and all the zeros of pj(x) are
real, simple and non-negative.

The weight function W(x, y) = (w1 ∗ w2 ∗ · · · ∗ wp)(x, y) with equations (1.11) and
(1.12) is relevant to a model of p Hermitian matrices coupled in a chain [2]. In fact all the
correlation functions of the eigenvalues of these matrices can be expressed as determinants
whose elements are combinations of Pi,j (x) and Qi,j (x), equations (2.1)–(2.6), where pj (x)
and qj (x) are polynomials bi-orthogonal with respect to this W(x, y). For example, the
eigenvalue density of the matrices at the ends of the chain is related to the density of the zeros
of these bi-orthogonal polynomials. A knowledge of the distribution of the zeros of Pi,j (x)
andQi,j (x) can thus be very useful to study the correlation functions in the above model.

2. Results and proofs

Here we essentially follow section 3 of [1]. With any monic polynomials pj (x) and qj (x) of
degree j , let us write

P1,j (x) := pj (x) (2.1)

Pi,j (x) :=
∫
pj (ξ)ULi(ξ, x) dξ 1 < i � p (2.2)

ULi(ξ, x) := (w1 ∗ w2 ∗ · · · ∗ wi−1)(ξ, x) 1 < i � p (2.3)

Qp,j (x) := qj (x) (2.4)

Qi,j (x) :=
∫
URi(x, ξ)qj (ξ) dξ 1 � i < p (2.5)

URi(x, ξ) := (wi ∗ wi+1 ∗ · · · ∗ wp−1)(x, ξ) 1 � i < p (2.6)

Note that Pi,j (x) and Qi,j (x) are not necessarily polynomials.

Lemma 1. For x1 < x2 < · · · < xn, y1 < y2 < · · · < yn
det[wi(xj , yk)]j,k=1,...,n > 0. (2.7)

This is essentially equation (40) of [1]. This can also be seen as follows. Let X and Y be two
n× n diagonal matrices with diagonal elements x1, . . . , xn and y1, . . . , yn respectively. Then
the integral of exp[−c tr (UXU−1Y )] over the n× n unitary matrices U is given by [3]

K
det[exp(−c xiyj )]i,j=1,...,n

�n(x)�n(y)
(2.8)
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whereK is a positive constant depending on c and n. Hence

exp


−1

2

n∑
j=1

[Vi(xj ) + Vi+1(yj )]




∫
dUe−ci trUXU−1Y = K

det[wi(xj , yk)]j,k=1,...,n

�n(x)�n(y)
.

(2.9)

The left-hand side is evidently positive while on the right hand side the denominator is positive
since x1 < x2 < · · · < xn and y1 < y2 < · · · < yn. From this equation (2.7) follows.

Lemma 2. For x1 < x2 < · · · < xn, y1 < y2 < · · · < yn,
det

[(
wi1 ∗ wi2 ∗ · · · ∗wi&

)
(xj , yk)

]
j,k=1,...,n > 0. (2.10)

Proof. Binet–Cauchy formula tells us that [4]

det
[(
wi1 ∗wi2

)
(xj , yk)

]
j,k=1,...,n

is equal to∫
ξ1�ξ2�···�ξn

det
[
wi1(xj , ξk)

]
j,k=1,...,n · det

[
wi2(ξj , yk)

]
j,k=1,...,n dξ1 . . . dξn. (2.11)

By lemma 1 the integrand is everywhere positive, so lemma 2 is proved for the case & = 2.
The proof is now completed by induction on &, again using the Binet–Cauchy formula. �

Lemma 3. For any monic polynomial pj(x) of degree j, Pi,j (x), 1 � i � p, may have
at most j distinct real zeros. Similarly, for any monic polynomial qj (x) of degree j ,
Qi,j (x), 1 � i � p, may have at most j distinct real zeros.

Proof. Let, if possible, z1 < z2 < · · · < zm, m > j , be the distinct real zeros of Pi,j (x).
Since

Pi,j (x) =
j∑
k=0

akTi,k(x) (2.12)

with

Ti,k(x) :=
∫
ξkULi(ξ, x) dξ (2.13)

Pi,j (z&) = 0 & = 1, 2, . . . ,m m > j (2.14)

implies that

0 = det


 Ti,0(z1) Ti,1(z1) . . . Ti,j (z1)

. . . . . . . . . . . .

Ti,0(zj+1) Ti,1(zj+1) . . . Ti,j (zj+1)




=
∫

det



ULi(ξ1, z1) ξ2ULi(ξ2, z1) . . . ξ

j

j+1ULi(ξj+1, z1)

. . . . . . . . . . . .

ULi(ξ1, zj+1) ξ2ULi(ξ2, zj+1) . . . ξ
j

j+1ULi(ξj+1, zj+1)


 dξ1 . . . dξj+1

=
∫
ξ2ξ

2
3 . . . ξ

j

j+1 det [ULi(ξk, z&)]k,&=1,...,j+1 dξ1 . . . dξj+1 (2.15)

or∫
det [ULi(ξk, z&)]k,&=1,...,j+1 · det

[
ξ&−1
k

]
k,&=1,...,j+1 dξ1 . . . dξj+1 = 0 (2.16)

in contradiction to lemma 2. Thusm cannot be greater than j . �
The proof for Qi,j (x) is similar.
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Lemma 4. Let the real constants c1, . . . , cp−1, none of them being zero, be such that Mi,j

defined by equation (1.13) exist for all i, j � 0. Then

Dn := det[Mi,j ]i,j=1,...,n �= 0 (2.17)

for any n � 0.

Proof. Let, if possible, Dn = 0 for some n. Then
∑n

j=0 Mi,j qj = 0, qj not all zero, and

∫
xiULp(x, y)

n∑
j=0

qjy
j dx dy = 0 i = 0, 1, . . . , n (2.18)

or ∫
pi(x)ULp(x, y)

n∑
j=0

qjy
j dx dy = 0 (2.19)

for any polynomial pi(x) of degree i � n. But
∫
ULp(x, y)

n∑
j=0

qjy
j dy (2.20)

has at most n distinct real zeros (lemma 3). So one can choose pi(x) such that

pi(x)

∫
ULp(x, y)

n∑
j=0

qjy
j dy > 0 (2.21)

in contradiction to equation (2.19). So Dn �= 0 and bi-orthogonal polynomials pj (x), qj (x)
exist (see equations (1.4) and (1.5)). �

Lemma 5. Let pj (x), qj (x) be the bi-orthogonal polynomials, equation (1.14); or with the
definitions (2.1)–(2.6)∫

Pi,j (x)Qi,k(x) dx = hj δjk 1 � i � p. (2.22)

Then Pi,j (x) has at least j real distinct zeros of odd multiplicity. So does have Qi,j (x).

Proof. Assuming m > 0, let, if possible, z1 < z2 < · · · < zm, m < j , be the only real zeros
of Pi,j (x) of odd multiplicity. Set

R(x) = det



Qi,0(x) Qi,1(x) . . . Qi,m(x)

Qi,0(z1) Qi,1(z1) . . . Qi,m(z1)

...
...

...

Qi,0(zm) Qi,1(zm) . . . Qi,m(zm)


 (2.23)

=
∫
URi(x, ξ)

m∑
k=0

αkξ
k dξ (2.24)

with some constants αk depending on z1, . . . , zm.
Since m < j , the bi-orthogonality gives∫

Pi,j (x)R(x) dx = 0. (2.25)
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However, R(x) can also be written as

R(x) =
∫

det



URi(x, ξ0) URi(x, ξ1)ξ1 . . . URi(x, ξm)ξ

m
m

URi(z1, ξ0) URi(z1, ξ1)ξ1 . . . URi(z1, ξm)ξ
m
m

...
...

...

URi(zm, ξ0) URi(zm, ξ1)ξ1 . . . URi(zm, ξm)ξ
m
m


 dξ0 dξ1 . . . dξm

=
∫

det



URi(x, ξ0) URi(x, ξ1) . . . URi(x, ξm)

URi(z1, ξ0) URi(z1, ξ1) . . . URi(z1, ξm)

...
...

...

URi(zm, ξ0) URi(zm, ξ1) . . . URi(zm, ξm)


 ξ1ξ

2
2 . . . ξ

m
m dξ0 dξ1 . . . dξm

= 1

(m + 1)!

∫
det



URi(x, ξ0) URi(x, ξ1) . . . URi(x, ξm)

URi(z1, ξ0) URi(z1, ξ1) . . . URi(z1, ξm)

...
...

...

URi(zm, ξ0) URi(zm, ξ1) . . . URi(zm, ξm)




×
∏

0�r<s�m
(ξs − ξr) dξ0 dξ1 . . . dξm

=
∫
ξ0�ξ1�···�ξm

det



URi(x, ξ0) URi(x, ξ1) . . . URi(x, ξm)

URi(z1, ξ0) URi(z1, ξ1) . . . URi(z1, ξm)

...
...

...

URi(zm, ξ0) URi(zm, ξ1) . . . URi(zm, ξm)




×
∏

0�r<s�m
(ξs − ξr) dξ0 dξ1 . . . dξm. (2.26)

Thus R(x) is represented as an integral whose integrand has a fixed sign determined by the
relative ordering of the numbers x, z1, z2, . . . , zm (lemma 2). It thus follows thatR(x) changes
sign when x passes through any of the points zk, k = 1, . . . ,m, and at no other value of x. In
other words, z1, . . . , zm are the only real zeros of R(x) having an odd multiplicity.
And therefore Pi,j (x)R(x) has a constant sign, so that∫

Pi,j (x)R(x) dx �= 0 (2.27)

in contradiction to (2.25).
If Pi,j (x) has no real zeros of odd multiplicity (m = 0), then R(x) = ∫

URi(x, ξ) dξ is
everywhere positive which contradicts equation (2.25). �

The proof for Qi,j (x) is similar.
As a consequence, we have the integral representations of Pi,j (x) for i > 1 and ofQi,j (x)

for i < p involving their respective zeros

Pi,j (x) ∝
∫

det



ULi(ξ0, x) ULi(ξ1, x) . . . ULi(ξj , x)

ULi(ξ0, z1) ULi(ξ1, z1) . . . ULi(ξj , z1)

...
...

...

ULi(ξ0, zj ) ULi(ξ1, zj ) . . . ULi(ξj , zj )




×
∏

0�r<s�j
(ξs − ξr) dξ0 dξ1 . . . dξj (2.28)
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Qi,j (x) ∝
∫

det



URi(x, ξ0) URi(x, ξ1) . . . URi(x, ξj )

URi(z1, ξ0) URi(z1, ξ1) . . . URi(z1, ξj )

...
...

...

URi(zj , ξ0) URi(zj , ξ1) . . . URi(zj , ξj )




×
∏

0�r<s�j
(ξs − ξr) dξ0 dξ1 . . . dξj . (2.29)

Lemmas 3 and 5 tell us that if pj (x) and qj (x) are bi-orthogonal polynomials satisfying
equation (1.14), then Pi,j (x) and Qi,j (x) each have exactly j distinct real zeros of odd
multiplicity. In particular, the zeros of the bi-orthogonal polynomials pj(x) ≡ P1,j (x) and
qj (x) ≡ Qp,j (x) are real and simple.

With a little more effort one can perhaps show that all the real zeros of Pi,j (x) and of
Qi,j (x) are simple. Other zeros, if any, must be complex. Whether the zeros of pj (x) (qj (x))
interlace for successive j , remains an open question.

3. Bi-orthogonal polynomials with another weight

For the weightW(x, y) = e−x−y/(x + y), 0 � x, y < ∞, one can say as follows:

Lemma 1′. One has [4]:

det[W(xj , yk)]j,k=1,...,n = exp


−

n∑
j=1

(xj + yj )


�n(x)�n(y)

n∏
j,k=1

(xj + yk)−1 (3.1)

which is evidently positive for 0 � x1 < x2 < · · · < xn, 0 � y1 < y2 < · · · < yn.
Lemma 3′. For any monic polynomial pj (x) of degree j , Pj (x) := ∫ ∞

0 W(x, y)pj (y) dy has
at most j distinct real non-negative zeros.

In the proof of lemma 3, replace equations (2.12)–(2.16) by

Pj(x) =
j∑
k=0

akTk(x) (3.2)

Tk(x) =
∫ ∞

0
ξkW(ξ, x) dξ (3.3)

Pj(z&) = 0 & = 1, 2, . . . ,m, m > j (3.4)

0 = det


 T0(z1) T1(z1) . . . Tj (z1)

. . . . . . . . . . . .

T0(zj+1) T1(zj+1) . . . Tj (zj+1)




=
∫ ∞

0
det



W(ξ1, z1) ξ2W(ξ2, z1) . . . ξ

j

j+1W(ξj+1, z1)

. . . . . . . . . . . .

W(ξ1, zj+1) ξ2W(ξ2, zj+1) . . . ξ
j

j+1W(ξj+1, zj+1)


 dξ1 . . . dξj+1

=
∫
ξ2ξ

2
3 . . . ξ

j

j+1 det [W(ξk, z&)]k,&=1,...,j+1 dξ1 . . . dξj+1 (3.5)

or∫
det [W(ξk, z&)]k,&=1,...,j+1 · det

[
ξ&−1
k

]
k,&=1,...,j+1 dξ1 . . . dξj+1 = 0 (3.6)

in contradiction to lemma 1′. Thus m cannot be greater than j .
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Lemma 4′. With

Mi,j :=
∫ ∞

0
xiW(x, y)yj dx dy (3.7)

Dn := det[Mi,j ]i,j=0,1,...,n �= 0 (3.8)

for any n � 0.

In the proof of lemma 4 replace everywhere
∫
ULp(x, y) . . . by

∫ ∞
0 W(x, y) . . . .

Lemma 5′. Let pj (x) be the (bi-orthogonal) polynomials satisfying∫ ∞

0
W(x, y)pj (x)pk(y) dx dy = hj δjk. (3.9)

ThenPj (x) := ∫ ∞
0 W(x, y)pj (y) dy and pj(x) each have at least j distinct real non-negative

zeros of odd multiplicity.

Let, if possible, 0 � z1 < z2 < · · · < zm m < j , be the only real non-negative zeros of
Pj(x) of odd multiplicity. Set R(x) = ∏m

j=1(x − zj ). Then as m < j , one has∫ ∞

0
Pj (x)R(x) dx = 0. (3.10)

But Pj(x) andR(x) change sign simultaneously as x passes through the values z1, . . . , zm and
at no other real positive value. So the product Pj (x)R(x) never changes sign, in contradiction
to (3.10). Therefore Pj (x) has at least j distinct real non-negative zeros of odd multiplicity.

To prove that pj(x) has at least j distinct real non-negative zeros let, if possible,
0 � z1 < z2 < · · · < zm, m < j , be the only such zeros. Set

R(x) = det



P0(x) P1(x) . . . Pm(x)

P0(z1) P1(z1) . . . Pm(z1)

...
...

...

P0(zm) P1(zm) . . . Pm(zm)




=
∫ ∞

0
W(x, ξ)

m∑
k=0

αkξ
k dξ (3.11)

with some constants αk depending on z1, . . . , zm.
Since m < j , the bi-orthogonality gives∫ ∞

0
pj(x)R(x) d x = 0. (3.12)

But

R(x) ∝
∫ ∞

0
det



W(x, ξ0) W(x, ξ1) . . . W(x, ξm)

W(z1, ξ0) W(z1, ξ1) . . . W(z1, ξm)

...
...

W(zm, ξ0) W(zm, ξ1) . . . W(zm, ξm)




×
∏

0�r<s�m
(ξs − ξr) dξ0 dξ1 . . . dξm (3.13)

which says that z1, . . . , zm are the only distinct real non-negative zeros of R(x) of odd
multiplicity and therefore pj (x)R(x) has a constant sign, in contradiction to (3.12).
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4. Conclusion

We have shown with the arguments of Ercolani and McLaughlin that if the weight w(x, y)
is such that det[w(xi, yj )]i,j=1,...,n > 0 for x1 < x2 < · · · < xn, y1 < y2 < · · · < yn and
moments

∫
w(x, y)xiyj dx dy exist for all i, j � 0, then bi-orthogonal polynomials exist and

their zeros are real, simple and lie in the respective supports of the weight w(x, y). The same
is true for a weight which is a convolution of several such weights.
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